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Abstract In bound constrained global optimization problems, partitioning methods
utilizing Interval Arithmetic are powerful techniques that produce reliable results.
Subdivision direction selection is a major component of partitioning algorithms and
it plays an important role in convergence speed. Here, we propose a new subdivi-
sion direction selection scheme that uses symbolic computing in interpreting interval
arithmetic operations. We call this approach symbolic interval inference approach
(SIIA). SIIA targets the reduction of interval bounds of pending boxes directly by
identifying the major impact variables and re-partitioning them in the next iteration.
This approach speeds up the interval partitioning algorithm (IPA) because it targets
the pending status of sibling boxes produced. The proposed SIIA enables multi-sec-
tion of two major impact variables at a time. The efficiency of SIIA is illustrated on
well-known bound constrained test functions and compared with established subdi-
vision direction selection methods from the literature.

Keywords Box-constrained global optimization · Interval branch and bound
methods · Symbolic computing · Subdivision direction selection

1 Introduction

Interval partitioning algorithms (IPA) use interval arithmetic (see e.g. Moore 1966)
to produce reliable results for constrained and unconstrained optimization (for an
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overview, see Hansen 1992; Ratschek and Rokne 1995). Due to their reliability, inter-
val applications take place in a wide scientific field (Kearfott and Kreinovich 1996).
In bound constrained global optimization problems, IPA subdivides the given domain
into smaller subspaces (boxes) that are assessed according to the function range cal-
culated by using an approximating inclusion function. Based on the function range
bounds and a known best solution that is updated during the search, some subspaces
are deleted reliably, because they cannot hold the global optimum solution (Hammer
et al. 1993; Pintér 1992). Subdivision continues in remaining boxes so that the location
of the global optimum solution can be enclosed within a small box of a given tolerance.
The final report contains all such boxes in the given function domain.

Convergence rate of IPA depends on the use of accelerating devices (such as mono-
tonicity and concavity tests) that help in discarding boxes (Ratschek and Rokne 1988,
1995) and on the selection of subdivision direction (variable whose domain is to be re-
partitioned) (Berner 1996; Csendes and Ratz 1996; Csendes and Ratz 1997; Csendes
et al. 2000; Hansen 1992; Moore 1966; Neumaier 1990; Ratz and Csendes 1995). In
IPA, the latter issue has a major impact on convergence rate because reducing the
domain size of a specific variable might enhance the reduction in the overestimated
function range of the sibling boxes to a significant degree. Thereby, boxes that cannot
be discarded due to their promising overestimated upper bounds may become dis-
posable in a few re-partitioning iterations with a good subdivision direction selection
strategy.

Subdivision rules proposed up to date are based on criteria such as the width of
variable intervals, or estimated function improvement by selected variables (gradient
information). The performance of such rules is assessed extensively on standard test
problems (Csendes and Ratz 1996, 1997; Csendes et al. 2000; Ratz and Csendes 1995)
resulting in the general conclusion that gradient based rules work much better.

In Berner (1996), these rules are converted into parallel multi-section rules by
taking the first k number of variables from a list of variables sorted according to
the rule (called k-best strategy here). Multi-section (subdivision of some variables in
parallel) and multi-splitting (subdivision of a single variable’s width into s > 2 pieces)
approaches are proposed in Csallner et al. (2000a, b). The latter studies investigate the
efficiency related to specific values of s with regard to each subdivision rule. Casado
et al. (2001) propose multi-section/multi-splitting hybrids by subdividing intervals of
all variables into 2 or more pieces (sn) in parallel. The authors propose a parametric
method that involves the comparison of a box assessment criterion with given con-
stants used in deciding which hybrid parallel scheme should be used for a given box.
In Casado et al. (2001) the authors use the box assessment criterion as a box selec-
tion rule and utilize multi-section subdivision rules based on k-best strategy found in
Berner (1996).

Here, we propose a symbolic computing—interval partitioning cooperation scheme
for enhancing the process of subdivision direction selection. In the literature, sym-
bolic-interval cooperation frameworks are proposed mostly for solving constraint
satisfaction problems (Ceberio and Granvilliers 2000; Granvilliers et al. 2001; Gran-
villiers 2004; Lhomme et al. 1998; Sam-Haroud and Faltings 1996). In particular,
consistency techniques (Sam-Haroud and Faltings 1996) and interval propagation
through multiple constraints are proposed to reduce variable domains so that feasible
regions can be identified (see hull and box consistency techniques (Granvilliers et al.
2001; Sam-Haroud and Faltings 1996). Here however, symbolic-interval cooperation
is developed to propagate intervals through different subexpression complexity levels



J Glob Optim (2007) 37:177–194 179

of a function. While past symbolic-interval cooperation was based on the full function
expression, the proposed cooperation propagates intervals at hierarchically recursive
subexpression levels. The propagation is exhaustive and it identifies a couple of major
impact variables (source variables) that provide exactly the relevant bound of the
function’s interval over a given box (in unconstrained maximization, this bound is
the upper bound of function range). We call this identification procedure symbolic
interval inference approach (SIIA). The subdivision direction selection rule devel-
oped from SIIA is called symbolic inference rule (SIR). SIR’s goal is to reduce the
domain of the source variables with a guarantee of narrowing down function range
overestimation in sibling boxes.

In this framework, SIR is integrated with IPA and it is activated at every box assess-
ment during execution. Here, to enable such a symbolic propagation, we develop three
basic components: a parser, a tree builder, and a rule operator. The tree builder con-
structs a binary tree that represents a given function after parsing. The rule operator
uses the binary tree for propagating intervals at the subexpression levels in order to
make an inference on the source variables. Source variables are subdivided in par-
allel in the next iteration. Hence, the proposed method also includes a multi-section
method that subdivides 2 variables at a time (an exception occurs when all variables
but one have too small interval widths to be subdivided). In our implementation,
source variable intervals are bisected in sibling boxes, however, multi-splitting can be
applied easily depending on the specific impact of each source variable. In the follow-
ing sections, the essential components of SIIA, the convergence property of SIR and
its implementation in IPA are described. Then, numerical experiments are conducted
on well-known test problems from the literature in order to assess the performance
of SIR against k-best (for a fair comparison, 2-best) parallel version of established
subdivision direction selection rules and against the standard 2n multi-section rule. It
is shown that SIR is effective in improving the convergence rate of IPA.

2 Interval partitioning algorithms: Proposed convergence criterion

2.1 Basics of IPA and terminology

Bound constrained global optimization problems are expressed as:

max f (x) (2.1)

where X ⊆ R
n is the search box and f : X → R, is the objective function. The search

box is assumed to be a closed interval and it is denoted as [X, X], where Xj = min Xj

and Xj = max Xj, for j = 1, 2, . . . , n. A global maximizer is denoted as x∗. Denote the
set of compact intervals by I := {[a, b] | a ≤ b; a, b ∈ R} and the set of n-dimensional
intervals (also called intervals or boxes) by I

n. The width of an interval X is defined by
w(X) = X −X. The definition of an inclusion function and its fundamental properties
are provided below.

Definition 2.1 Let f (Y) = {f (x) : x ∈ Y} be the range of f over Y ∈ I(X), where I

is the set of n-dimensional compact intervals in X. A function F : I(X) → I is an
inclusion function for f , if f (Y) ∈ F(Y) for any Y ∈ I(X).

Definition 2.2 An interval function F is said to be inclusion isotone if for any pair of
boxes Y and Z ⊆ I(X), Y ⊆ Z implies F(Y) ⊆ F(Z).
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It is assumed that for the studied functions the natural interval extension of f over
Y is always defined in the real domain. Furthermore, F is α-convergent over X, that is,
for all Y ∈ I(X), w(F(Y)) − w(f (Y)) ≤ cw(Y)α where c and α are positive constants.

IPA subdivides X into smaller boxes that are assessed with respect to their potential
of holding a global optimal solution. Basically, IPA is categorized as a Branch and
Bound technique in the real domain. The following section summarizes box assess-
ment.

2.2 Optimality status of boxes and convergence criterion

In a partitioning algorithm, each box Y is assessed for its optimality status by calcu-
lating the bounds of F(Y) with an Interval Library such as PROFIL (Knüppel 1994).
The concepts related to a box’s optimality status are discussed below.

Suppose that the objective function value of a known solution is available as a
current lower bound (CLB) for f (x). Boxes are classified according to the following
rules.

Definition 2.3 (Cut-off test) If F(Y) < CLB, then the box Y is called a suboptimal
box and it is deleted because it cannot contain x∗.

Definition 2.4 If F(Y) ≤ CLB and F(Y) > CLB, then the box Y is called a pending
box. A pending box holds the potential of containing x∗.

Definition 2.5 The pending status or potential of a pending box is defined as:

PY = F(Y) − CLB. (2.2)

When a box is pending, more advanced optimality tests (accelerating devices) such
as monotonocity, and nonconvexity test can be applied to discard it (Jansson and
Knüppel 1995; Ratschek and Rokne 1988, 1995).

In each box assessment, the function range estimate F(M) over a sufficiently small
box M enclosing the mid-point of Y is calculated. In the assessment of the first box,
min f (M) becomes the current lower bound (CLB) and each time a better mid-point
solution is found, CLB is updated.

IPA continues to subdivide available pending boxes until either they are all deleted
or interval sizes of all variables in existing boxes are less than a given tolerance, δ. All
such boxes are reported as potential boxes that may contain x∗. In Fig. 1, a generic
pseudocode is provided for IPA.

In essence, IPA aims to discard suboptimal boxes and reduce the number of pending
boxes with as few function calls as possible. This is facilitated by partitioning appropri-
ate variables and generating subboxes whose overestimation in PY is reduced. Then,
the algorithm converges fast by discarding suboptimal boxes early and also by parti-
tioning promising boxes in a fitting direction to reach the global basin of attraction.
While variable selection is made according to this criterion, box selection is carried out
following a worst-first strategy, i.e. the box with the maximum PY is selected first. We
would like to mention that PY is a traditional box selection index used in IPA. A nor-
malized version of this index (the RejectIndex) is obtained by dividing PY by w(F(Y))

(Casado et al. 2001). The RejectIndex aims at reducing the overestimation in smaller
boxes with greater uncertainty whereas we target at discarding large boxes. Below,
we define a convergence criterion based on the pending status of boxes and show that
IPA is convergent with respect to the latter. We assume for the whole study that the
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Notation : WLB: Working List of Boxes; M : Point interval at the mid-point of a box; 
F(M) : range estimate at M ; δ

δ

δ

:  tolerance for final interval length 

Void IPA:
{
  Construct tree structure for f(x);
  Initialize: initial box = II(X); CLB =- ; WLB = I I (X);
  While WLB φ do 
  { 
   Select a box Y  WLB; Calculate F(Y);

if ( ( )F Y > CLB) AND (At least for one variable interval, w(xi) > )

     { 

       if ( F(Y) > CLB), then CLB = F(Y) ;

       Calculate the mid-point function value, F(M); 
       if (F(M) > CLB), then CLB = F(M);
       Select subdivision direction; // Activate Symbolic Interval Inference Rule;
       Subdivide Y  to obtain four sibling boxes: S1, S2, S3, S4; // Multisection - 4 siblings
      WLB = WLB – {Y}; WLB = WLB + {S1, S2, S3, S4};
     } // endif
    else 
    { 
      if (w(xi)< , ∀i), then store Y; WLB = WLB – {Y};
     } 
   } // endwhile
  Report all stored boxes; 
} // endprocedure

∞

∈

≠

Fig. 1 Generic pseudocode for IPA

subdivision direction selection is balanced, i.e. each coordinate direction appears in
the sequence of subdivision an infinite number of times (Csendes and Ratz 1997).

Lemma 2.6 IPA reduces the pending status of boxes by nested partitioning where the
widths of the subdivided boxes tend to zero.

Proof Consider a pending box Y. Suppose a variable is re-partitioned to result in
two sibling boxes V and W. By the isotone inclusion property of F, the following holds
for V and W:

F(Y) ≥ F(V) and F(Y) ≥ F(W). (2.3)

In the worst case, even if CLB does not improve in sibling boxes, i.e., CLBV = CLBY ,
since PY is a function of F(Y), and

PY − PV ≥ 0. (2.4)

Hence, the reduction in the pending status of siblings is always non-negative, and given
a box Yj that contains x∗, the pending status goes to zero in the limit as the number
of nested re-partitioning iterations j grows, (utilizing the α-convergence). That is,

lim
j→∞ F(Yj) → CLB. (2.5)

While boxes that do not contain x∗ are discarded by the cutoff test due to the reduction
in their pending status, the optimal box has F(Yj) → f (x*) in the limit. �	



182 J Glob Optim (2007) 37:177–194

Convergence properties of subdivision rules proposed in the literature are gener-
ally based on a balanced bisection, e.g. on bisection along the largest width interval
variable. Convergence of those rules are guaranteed in the sense that in the limit, as
re-partitioning iterations increase, a sufficiently fine partition provides an enclosure
for the global optimum (Ratschek and Rokne 1988). Some rules based on gradient
information require the application of monotonicity test in IPA to guarantee con-
vergence (Ratz and Csendes 1995). The proposed criterion only uses the property
of inclusion isotonicity, the α-convergence, and it does not require any additional
assumptions.

3 Symbolic interval inference approach (SIIA) for subdivision direction selection

The proposed SIIA has three enabling components: a parser, a tree builder, and a rule
operator. The parser is activated once before IPA is executed. It dissects the function
expression and passes the output to the tree builder. A binary tree that represents the
function with all its subexpressions is then constructed. The contribution of subexpres-
sions and atomic elements (variables) to the function range are recursively calculated
by calling an Interval Library at each (molecular) level of the hierarchical binary tree
so that the impact of all terms can be assessed in descending order of complexity.

At each box assessment, SIR activates a tree traversal or labeling procedure to
identify the pair of variables to be re-partitioned. Since PY is a function of F(Y), SIR
labels F(Y) to reduce PY at the root node (function expression). Then, SIR labels
the interval bound resulting in the label value at the root node and goes down the
tree until the first atomic element (variable) having the maximum impact on F(Y) is
reached. Then, a backward traversal is activated to identify the coupling maximum
impact (source) variable. This couple is re-partitioned in the next iteration to form 22

siblings in parallel. A second variant of SIR is obtained by selecting the subexpression
with the largest interval width rather than the maximum bound one. In case of ties
among subexpression nodes, the one with the maximum bound can be chosen. Both
variants of SIR have been tested in this paper.

3.1 The tree builder: Binary tree representation

Binary tree representation of expressions enables the execution of SIR. Leaves of
the binary tree are atomic elements, i.e. they are either variables or constants. All
other nodes represent binary expressions of the form (Left ◦ Right). ◦ can be a binary
arithmetic operator (∗, +, −, /) having two branches (“Left”, “Right”) or a unary
mathematical function such as ln, exp, sin, etc. having the argument of the function
always placed in the “Left” branch. We provide the following expression (Eq. 3.1) as
an example to be used throughout this paper for illustrating the mechanics of SIIA’s
three components:

((x1 + x2) ∗ (x3 + x4)) + sin(x1 + x3). (3.6)

In Eq. 3.1, the partial expression “sin(x1 + x3)” contains one unary operator (sine)
that always branches out to its left, however, the addition operator within the sine
operator is a binary operator connecting x1 and x3. The binary tree pertaining to this
example is illustrated in Fig. 2.
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3.2 Rule operator: Interval propagation through a binary tree

Interval bounds for subexpressions (intermediate nodes) are calculated with a
bottom-up tree traversal. First, the interval ranges of each leaf (variable or con-
stant) are substituted into the subexpressions at the next higher level by using the
connecting operators. This process is repeated by accessing the next higher level until
the root node is reached. The pseudocode of the rule is given in Fig. 3 and propagated
intervals for the expression in (3.1) are illustrated in Fig. 2.

This recursive propagation is realized using the monotonicity property of elemen-
tary interval operations (binary operator) and functions (unary operator). Given the
fact that Q, G, and H are isotone inclusion functions, for any recursive definition
of arithmetical expression q = h ◦ g, the range q(Y) is accurately represented by
Q(Y) = G(Y) ◦ H(Y). Consequently, interval propagation over a binary tree results
in an accurate calculation of subexpression intervals.

Level 0 

Level 1 

Level 2 

Level 3 x1 x2 x3 x4 x1 x3

+
+

*

+

sin

+

[-1, 10] [-10, 20] [1, 5] [1, 10] [-1, 10] [1, 5] 

[-11, 30] [2, 15] 
[0, 15] 

[-1, 1] 

[-165, 450] 

[-166, 451] 

Fig. 2 Interval propagation for “((x1 + x2) ∗ (x3 + x4)) + sin(x1 + x3)′′

Node_Type SIR (Node_Type Node) {

if (node_level k = 0), bnd = F(Y) ;

    else bnd = Λ k;
  Identify the pair a  b 

{ 1 1{ }k kL R− − ,{ }k+1 k+1L R , { }k+1 k+1L R , { }k+1 k+1L R } : a b = bnd;

Λk+1 = MAX {|a|, |b|};  
   if Λk+1  = | a |, then return the Left branch node as labeled at level k+1;
     else return the Right branch node as labeled at level k+1;
 } 

∈Θ
Θ Θ Θ Θ Θ

Fig. 3 Pseudocode for SIR-bounds (Input: node at level k; Output: labeled node at level k + 1)
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3.3 Symbolic Inference Rule (SIR) and Labeling Procedure SIR_Tree

In the maximum bound variant of SIR (SIR-bounds), one interval bound is labeled
at a time at each level of the tree by executing forward and backward chaining to end
up with the pair of source variables (leaves) that contribute most to F(Y). The couple
of source variables identified are subdivided in the next iteration.

Suppose we proceed to identify a source variable on the binary tree of a function,
starting from the root node. There are two possible branches to take from any parent
node. From here on, we denote a parent at tree level k as Dk, and the nodes Left and
Right that are its subbranches, as Lk+1 and Rk+1. Further, we define �k as labeled
bound at level k.

Let us also denote the interval bounds of parent node Dk by [Dk, D
k], and those

of the subbranches as [Lk+1, L
k+1] and [Rk+1, R

k+1]. As mentioned before, we label

D
0
, i.e., F(Y), at root level (level zero) of the tree so as to reduce PY and result in a

convergent rule.

For the root node, we determine which pair of interval bounds ({L1 ◦R1}, {L1 ◦R
1},

{L1 ◦ R1}, {L1 ◦ R
1}) results exactly in D

0
when connected by their operator. Then, we

compare the absolute values of individual bounds in the pair and take their maximum

to choose the corresponding L or R branch. For instance, if {L1 ◦ R1} = D
0
, and when

|L1| = max {|L1|, |R1|}, then we take the Left branch and label |L1| to go down to the
next level (level 2). This procedure is recursively applied from top to bottom, each
time searching for the bound pair resulting in the labeled bound at the upper level till
a leaf is hit. (Note that when a leaf is a constant, its counterpart is always selected,
that is, a pair of subbranches that include a constant is treated as a unary operator.).

Once this forward tree traversal is over, all leaves in the tree corresponding to the
variable selected are set to “Closed” status. The procedure then backtracks to the next
higher level of the tree to identify the other leaf in the couple of variables that produce
the labeled bound. Backtracking ends when the first “Open” leaf is encountered in
this search. Hence, the couple of variables that contribute most to PY are identified.
A formal procedure of SIR-bounds is given in Fig. 3. The pseudocode of the labeling
algorithm, SIR_Tree, is given in Fig. 4. The start node is initialized as the root node.

Node_Type SIR _Tree (Node_Type Start_Node) {
 If ((Count > 2) OR (All leaves are “Closed”)) then exit;
 Select_Node = SIR (Start_Node);     // calls procedure SIR
 If (Select_Node. Status = “Open Node”) 
     Start_Node = SIR_Tree(Select_Node);
 Else if (Select_Node. Status = “Open Leaf”)  // found a source variable 
     { 
        Store source variable “Open Leaf”; 

  Close all leaves of type “Open Leaf”;
        Count++; 
        Start_Node = SIR_Tree (Next_Up(Select_Node));   // backtrack to identify second source 
      } 
     Else Start_Node = SIR_Tree (Next_Up(Select_Node)); // backtrack to identify second source 
 Return Start_Node; 
}

Fig. 4 Procedure SIR_Tree:Recursive tree traversal of SIR. (Input: Root node; Output: pair of source
leaves—variables)
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Before procedure SIR_Tree is called for any box Y, all variables that have reached
their positive tolerance widths (relative to the largest width of the variables that are
used in the computation on the pending list) and that cannot be subdivided in the next
iteration are set to “Closed” status. This is necessary, since otherwise the direction
selection rule could choose only some of the possible subdivision directions, and that
may endanger the convergence of the IPA.

As an alternative to the above described rule, SIR-bounds, we have also investi-
gated another one (called SIR-widths), that chooses that branch of the computation
tree which has the largest width of the expression inclusion related to the given node.
In case the two widths are equal, we follow the branch according to SIR-bounds.

3.4 An illustration of SIR and SIR_Tree procedures

Suppose we have the example given in Fig. 2 with the expression interval [−166, 451].
Then, “451” is selected as the labeled bound �0 at the root node. In SIR-bounds, we
next determine which pair of interval bounds ({L1+R1}, {L1+R

1}, {L1+R1}, {L1+R
1})

results exactly in D
0
. The pair of interval bounds that provides 451 is (450, 1) since

“450+1= 451”. Hence, L
1 ◦ R

1 = D
0
. We then compare the absolute values of indi-

vidual bounds in this pair and take their maximum as the label at level k + 1. �k+1 =
max {L1

, R
1} = L

1 = 450. All steps of SIR_Tree for SIR-bounds and SIR-widths are
provided below in detail and decisions are illustrated in Figs. 5 and 6 with bold arrows
respectively.

In case of SIR-bounds, this leads to R
3
, a bound of leaf x2. The leaf pertaining to

x2 is “Closed” from here onwards, and the procedure backtracks to Level 2. Then,
SIR-bounds leads to the second source variable, x1.

x1 x2 x3 x4 x1 x3

+

*

+

sin

+
+

[ -10, 20] [1, 5] [1, 10] [1, 5]

[2, 15]

[0, 15]

[-1, 10]

[-166, 451]=[-166, 450+1]

[-1, 1]

[-165, 450]=[-165, 30*15]

[-11, 30]=[-11, 10+20]

[-1, 10]

Fig. 5 Demonstration of the run of SIR-bounds on the example
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x1 x2 x3 x4 x1 x3

+

*

+

sin

+
+

[ -10, 20] [1, 5] [1, 10] [1, 5]

[2, 15] =13

[0, 15]

[-1, 10]

[-166, 451]=[-166, 450+1]

w([-1, 1]) = 2

w( [-165, 450]) = 615

w( [-11, 30]) = 41

[-1, 10]

Fig. 6 Demonstration of the run of SIR-bounds on the example

In case of SIR-widths, this leads to L3, a bound of leaf x1. Then, the procedure
backtracks to Level 2 and SIR-widths leads to the second source variable, x2.

SIR-bounds SIR-widths

Level 0: [D0, D
0] = [−166, 451]�0 = D

0
.

a ◦ b = {(−165+1) or (450+1) or (−165−1)
or (450 − 1) }
= 451.
Hence, a ◦ b=L

1 + R
1
, and

�1 = max {|L1|, |R1|} = max {|450 |, |1|}
= 450 = L

1
.

Level 1: [D1, D
1]= [−165, 450]

a ◦ b = {(−11 ∗ 2) or (30*2) or (−11 ∗ 15) or
(30 ∗ 15)}

= 450 ⇒a ◦ b =L
2 ∗ R

2
,

�2 =max {|L2|, |R2|} = max {|30|, |15|} =

30 ⇒ L
2
.

Level 2: [D2, D
2] = [-11, 30]

a ◦ b = {(−1 − 10) or (−1 + 20) or (10 + 20)

or (10-10)}

= 30 ⇒a ◦ b =L
3 + R

3
,

�3 =max {|L3|, |R3|} = max {|10|, |20|} =

20 ⇒ R
3
.

Level 0: [D0, D
0]= [−166, 451], �0 = D

0
.

w(L1)= 615 and w(R1) = 2. Hence,
�1 =max {w(L1), w(R1) } = 615 = L1.

Level 1: [D1, D
1]= [−165, 450]

w(L2)= 41 and w(R2) = 13.
�2 =max {w(L2), w(R2) } = 41 = L2.

Level 2: [D2, D
2] = [−11, 30]

w(L3)= 11 and w(R3) = 10.
�3 =max {w(L3), w(R3) } = 11 = L3.

As a final remark on this example, we would like to mention that the two 2-best
parallel gradient based rules from the literature (Berner 1996) (Rules B/C) select x2
and x4 in parallel for re-partitioning this box. This results in a 10% lower reduction in
the total pending status of all four siblings as compared to the reduction achieved by
SIR-bounds and SIR-widths.
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3.5 Convergence of SIR

First, we briefly summarize the major points in the convergence proofs. In the next
two Lemmas, we show two exceptional subexpression forms where SIR may not be
able to identify the source bounds at a given level k of the binary tree. The rules that
deal with these exceptional cases are also described. It is shown that the latter rules
ensure the convergence for SIR. Theorem 3.5 is the basic convergence proof for SIR.

The following Lemmas (Lemmas 3.1 and 3.2) discuss even power, abs and trig oper-
ators (trig denotes any trigonometric function) where SIR cannot label an interval
bound at level k+1 symbolically if some ambiguous conditions hold on subexpression
intervals at the relevant levels of the binary tree. Lemma 3.3 indicates two exceptional
cases for interval multiplication operator.

Lemma 3.1 Let the operator at any level k of a binary tree be ◦ = “ m” (m is even) or
◦ = “abs”, and let �k = Lk= 0. Further, let Lk+1 < 0. Then, SIR cannot identify �k+1.

Proof The proof is constructed by providing a counter example showing that SIR
cannot identify �k+1 when the operator at level k is an even power and �k = 0.
Suppose that at level k we have the interval [0, 16] and �k = Lk = 0. Let the operator
at level k be 2. Since power is a unary operator, there is a single Left branch to this
node at level k + 1. Assume that the Left branch at level k + 1 is a subexpression

interval [−4, 2]. It is obvious that neither Lk+1 nor L
k+1

results in �k. The case for
the absolute value is similar. �	
Lemma 3.2 Let “trig” denote any trigonometric function. Define “maxtrig” and “min-
trig” as the maximum and the minimum values trig can take during one complete cycle.
Further, let the operator at any level k of a binary tree be ◦ = “trig”, and maxtrig

∈ [Lk, L
k] ⋃ {−∞, ∞} or mintrig ∈ [Lk, L

k] ⋃ {−∞, ∞}. Then, SIR may not be able
to identify �k+1.

Proof Similar to Lemma 3.1, a counter example is sufficient for a proof. Suppose

we have the ◦ = “sin” operator at level k and the interval [Lk, L
k] = [0.5, 1]. Let the

interval of the unary Left branch at level k + 1 be [Lk+1, L
k+1] = [π/6, 2π/3]. Both

Lk+1 and L
k+1

might result in Lk and none result in L
k
. The other stated cases can

be proven similarly. �	
Lemma 3.3 Suppose the interval operator at a given level k is “◦ =′ ×′, and, Lk+1, Rk+1

< 0, L
k+1

, R
k+1

> 0,
∣
∣
∣Lk+1

∣
∣
∣ = R

k+1
and

∣
∣
∣Rk+1

∣
∣
∣ = L

k+1
. Then, SIR might not be able

to label a bound in the right or left sub-trees at level k + 1.

Proof It is sufficient to show a counter example for SIR’s labeling procedure.
Suppose ‘×’ type of interval operation exists at level k, with Lk+1 = [−1, 2] and
Rk+1 = [−2, 1]. Then, at level k the × operator’s interval is [−4, 2]. If the labeled

bound is 2 at level k, then both Lk+1 × Rk+1 = L
k+1 × R

k+1 = 2 and we cannot
choose among the two pairs of bounds at level k + 1 that both provide the labeled
bound at level k. �	
Lemma 3.4 shows that SIR symbolically identifies the correct pair of candidate bounds
resulting in �k at any tree level k as long as the ambiguities indicated in Lemmas 3.1,
3.2 and 3.3 do not exist in a constraint expression.
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Lemma 3.4 For function expressions excluding the ambiguous subexpressions indi-
cated in Lemmas 3.1, 3.2 and 3.3, SIR identifies the correct couple of bounds at level
k + 1 that result exactly in �k at level k.

Proof True by the monotonicity property of the remaining elementary interval oper-
ations and functions. �	
3.6 Rules applied in case of labeling ambiguities

We now describe convergent rules that can be applied by SIR_Tree in case labeling
ambiguities described in Lemma 3.1, Lemma 3.2 and Lemma 3.3 arise during tree
traversal. Assume that there exists a subexpression of the type indicated in Lemma
3.1 at level k of a binary tree with �k = Lk = 0 and an interval bound at level
k + 1, Lk+1 < 0. The bound labeling rule to be applied by SIR_Tree at level k + 1 is
�k+1 = Lk+1. Now, assume that there exists a trig type subexpression at level k of

a binary tree with maxtrig ∈ [Lk, L
k] or mintrig ∈ [Lk, L

k]. The bound labeling rule

to be applied by SIR_Tree at level k + 1 is �k+1 = max
{
|Lk+1|, |Lk+1|

}
. Finally, in

the exceptional case found in Lemma 3.3, the choice in the two pairs of bounds is
arbitrary.

Theorem 3.5 The IPA algorithm is convergent both with the SIR-bounds and with the
SIR-widths interval subdivision selection rules in the sense that the sequence of leading
intervals converges only to global maximizer points.

Proof Consider first the case when the SIR-bounds rule is applied. Assume that
there exists such a subsequence {Xi} of the leading boxes that Xi ⊂ Xi−1, and there
exist a point x′ in the search interval such that f (x′) < f (x∗), and x′ is in each Xi. We
demonstrate that it will imply a contradiction.

Prove first that during the subdivision in the subsequence {Xi} every such variable
that appears in the computation tree will be halved. It is so since otherwise when
a variable that is used during computation would keep the original width while the
widths of others converges to zero. As a consequence, then {Xi} converge to a point
regarding those variables that appear in the computed expression. This fact provides
the contradiction, since the selection of the subinterval with the largest upper bound
on the objective function cannot converge to a point x′ in the search interval such that
f (x′) < f (x∗), due to the α-convergence assumed.

For the case of the SIR-widths subdivision direction selection rule the proof is sim-
ilar, but it is more straightforward. The respective interval subsequence has intervals
the width of which converges to zero for all variables used within the computation.

However, the leading interval subsequences do not necessarily converge to points
of the search space. It may happen that there is at least a variable that does not con-
tribute to the objective function, i.e. it is not used in the computation tree. In cases
where there is a continuum of global maximizer points and the resulting intervals
highlight this phenomenon, such variables will keep their width in the original search
interval. This is true for both introduced selection rules, and this indicates that these
are as sophisticated as the rules B and C that also have this feature.

Note that the proposed interval subdivision direction selection rules can be well
inserted into the directed acyclic graph framework developed by the COCONUT
project (Schichl and Neumaier 2005).
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4 Numerical experiments

4.1 Comparison basis

We compare the performance of SIR with two well established and efficient gradient-
based subdivision direction selection rules (Rules B/C) from the literature (Ratschek
and Rokne 1995; Csendes et al. 2000). These rules have become standard benchmarks
because they have been identified as best performing among others after extensive
testing. For a fair comparison with our multi-section approach, Rules B/C are also
converted into multi-section rules by applying 2-best subdivision strategy (Berner
1996), i.e. the first two variables from the list (sorted according to Rules B/C) are
partitioned. We describe these rules briefly below.

Rule B (Hansen 1992). Rule B chooses variables according to a maximal index con-
sisting of variable interval width multiplied by the width of its respective first order
derivative, w(F ′

i (X)), i.e.

Select xk : Ck = max
i=1,...,n

{Ci}, where Ci = w(Xi)w(F ′
i (X)). (4.7)

Rule C (Ratz 1992). The first order derivative of each variable is multiplied by the
difference between its interval and its midpoint, Mi. The variable with the maximum
index value is selected by Rule C.

Select xk : Ck = max
i=1,...,n

{Ci}, where Ci = w(F ′
i (X)(Xi − Mi)). (4.8)

4.2 Test functions

27 well-known test functions from the literature are selected to compare perfor-
mance of SIR against Rules B/C multi-section approach. The number of test in-
stances becomes 34 as some functions such as Levy, Griewank and Schwefel are
run with increasing number of dimensions (up to 30). The test functions are pro-
vided with their references and features in Table 1. The complexities and features
of these test functions are discussed in detail in previous comparisons (e.g., Özd-
amar and Demirhan 2000) and they present a balanced portfolio from easy (such
as Schwefel 3.1, Box), through moderate (e.g., Griewank) to difficult (e.g., Schwe-
fel 3.7) problems with topological properties discussed in many global optimization
references. (CUTEr—A Constrained and Unconstrained Testing Environment and
IRIDIA: http://cuter.rl.ac.uk/cuter-www/problems.html.)

4.3 Results

Performance is measured in terms of the number of function and gradient calls (as
indicated by FE and GE, respectively in Table 2), the CPU time in seconds, and
the absolute deviation from the global optimum value. Positive absolute deviations
occur in cases where methods fail to converge within 300 CPU seconds. The latter
test instances are indicated at the end of Table 2. In SIR runs, FE does not include
calls at subexpression levels because they are partial expression calls, and the latter
are assumed as computational overhead. FE indicated for SIR is equal to the number
of tree traversals. Rules B and C are supported by the monotonicity test since it does
not require additional gradient calls. Finally, all methods use the cut-off test.
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Table 1 Description and references of the test functions

Problem (Dimension) Description Reference Name

Ackley (4) Multimodal trigono-
metric function

Website MATLAB/
TEST/Lazauskas

P5

Brownal (10) Twice differentiable
Sum of Squares.

CUTEr P26

Box 3D (3) Singular problem
with manifold of
solutions

Schwefel (1981) P1

Cos 4 (4) Multimodal trigono-
metric

Breiman and Cutler
(1993)

P6

Dixon3dq (10) Quadratic function CUTEr P24
Djong’s Function 2 (8) Long flat valley De Jong (1975) P20
Eg1 (3) Twice differentiable

trigonometric function
CUTEr P2

Exp 6 (6) Exponential function Brieman and Cutler
(1993)

P14

Extended Kearfott (4) Polynomial function Kearfott (1979) P7
Extrosnb (10) Twice differentiable

Sum of Squares.
CUTEr P23

Genhumps (5) Twice differentiable
Sum of Squares.

CUTEr P13

Griewank (5, 10, 20) Wide spread
regularly distributed
maxima, trig.

IRIDIA P10, P22, P28

Hartman (6) 4 local minima Törn and Zilinskas
(1989)

P32

Hs045 (5) Twice differentiable
geometric function

CUTEr P9

Levy 14,16,18 (3, 5,7) 2700, 105, 108 local
minima, trigonomet-
ric

Levy et al. (1982) P3, P12, P17

Levy 10,11,12 (5, 8, 10) 105, 108, 1010 local
minima, trigonomet-
ric

Levy et al. (1982) P11, P19, P25

Michalewicz (5) Multimodal trigono-
metric

IRIDIA P31

Powell (4) Singular, Hessian at
origin

Moré et al. (1981) P4

Rastrigin (8) Highly multimodal
trigonometric, regu-
larly distributed
local maxima

Website MATLAB/
TEST/Lazauskas

P18

Rosenbrock (10) Long curved only
slightly decreasing
valley

Rosenbrok (1970) P21

S271 (6) Quadratic function Schittkowski (1987) P15
S288 (20) Quadratic function Schittkowski (1987) P33
Schwefel 1.2 (4) Continuous

unimodal
Schwefel (1981) P8

Schwefel 3.1 (3) Unimodal function Schwefel (1981) P34
Schwefel 3.7 (15, 30) Singular Hessian at

x∗ = 0
Schwefel (1981) P27, P29

Shekel (4; m = 10) Multimodal test
function

Törn and Zilinskas
(1989)

P30

Sphere (7) Unimodal IRIDIA P16
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Table 2 Comparison of numerical results

Problem SIR-Bound SIR-widths Rule B Rule C

FE CPU FE CPU FE GE CPU FE GE CPU

P1 180 0.407 164 0.296 140 141 0.313 140 141 0.312
P2 414 0.203 292 0.125 12 13 0.016 12 13 0.016
P3 324 0.142 156 0.095 164 165 0.172 164 165 0.188
P4 1224 0.875 1224 0.859 1000 1004 1.141 1060 1061 1.297
P5* 4260 2.950 416 0.312 – – – – – –
P6 5460 6.771 4664 4.263 276 277 0.391 276 277 0.391
P7 296 0.125 296 0.156 432 433 0.421 432 433 0.421
P8 1488 5.500 260 0.125 200 201 0.140 200 201 0.140
P9 320 0.375 512 0.530 20 21 0.015 20 21 0.047
P10 316 0.359 252 0.234 240 241 0.390 240 241 0.391
P11 316 0.453 304 0.423 236 237 0.719 236 237 0.874
P12 416 0.469 340 0.155 268 269 0.594 268 269 0.594
P13 10556 11.384 496 0.593 416 417 1.155 416 417 1.155
P14 624 0.671 572 0.514 28 29 0.062 28 29 0.062
P15 932 0.719 524 0.344 520 521 0.781 520 521 0.781
P16 384 0.281 384 0.281 108 109 0.203 108 109 0.203
P17 416 0.500 532 0.765 364 365 1.624 364 365 1.624
P18 538 1.187 492 0.765 488 489 2.140 488 489 2.140
P19 568 1.311 580 1.483 380 381 3.156 380 381 3.156
P20 488 0.717 488 0.750 484 485 2.219 488 489 2.220
P21 652 1.410 652 1.389 720 721 6.156 708 709 6.047
P22 640 2.017 572 1.110 488 489 3.578 484 485 3.484
P23 572 1.141 572 1.145 552 553 4.437 544 545 4.338
P24 616 1.297 616 1.329 644 655 3.859 588 589 3.687
P25 672 1.915 564 1.529 472 473 6.422 472 473 6.422
P26 648 3.393 608 2.184 484 485 5.422 484 485 5.516
P27 128 0.172 128 0.203 124 125 1.313 124 125 1.313
P28 1332 13.590 1120 5.891 960 961 39.482 972 973 39.733
P29 252 0.812 252 0.830 244 245 17.187 244 245 17.124
Average 1208 2.108 622 0.989 374 375 3.697 455 456 3.703
SD 2141 3.283 815 1.266 255 256 7.832 259 259 7.865
Best – 8 – 16 – – 5 – – 4

Problems not converged within 300 CPU seconds
Problem SIR-bound SIR-widths Rule B Rule C

FE Deviation FE Deviation FE GE Deviation FE GE Deviation

P30 10712 0.008 10656 0.000 17182 17183 0 17182 17183 0
P31 10112 2.884 14292 0.000 17506 17507 0 17274 17275 0
P32 9636 0.163 12144 0.002 9484 9485 0 9484 9485 0
P33 1356 0.000 135 0.000 6196 6197 3000 10576 10577 3000
P34 308 0.000 21072 0.000 220 221 0 220 221 0

* problem with computing the gradient value

A run is completed when for all non-discarded pending boxes the difference of the
function upper bound over the box to the current lower bound is less than 1 × 10−13.
The runs were executed on a PC with 2 GB RAM, 2.4 GHz Intel Xenon CPU, under
Windows OS system. All codes were developed with Visual C++ 6.0 interfaced with
the PROFIL interval arithmetic library.

In the last 5 rows of Table 2, we can observe that Rule B and C were not able to
converge on 4 test functions within the CPU time limit imposed, but they are able
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Table 3 Total CPU times in seconds for small and larger size problems

Dimension SIR-bounds SIR-width Rule B Rule C

n < 5 16.973 6.231 2.594 2.765
n ≥ 5 44.173 22.447 100.914 100.911

to converge for the 5th one in 0.141 seconds. Similarly, the SIR-bounds rule does
not converge for the first 3 functions, but it was able to converge for the 4th and 5th
functions within 6.153 seconds, and 0.282 seconds respectively. SIR-widths does not
converge for first 3 test functions and the 5th test function, but it was able to converge
for 4th one within 6.374 seconds. The performance of SIR is notable for the function
S288 where Rules B/C end up very far from the global optimum.

Considering all 34 test functions, the results obtained by Rules B and C are not
significantly different. When the first part of Table 2 is analyzed, we observe that
the average number of function calls for SIR is larger than those of Rules B and C
(including their gradient calls). Despite this fact the average CPU time required for
SIR-bounds is almost half of those of Rules B and C. That of SIR-widths is almost one-
fourth of Rules B/C. The tree traversal overhead in SIR is comparable with the task
of calculating the gradient in the other rules. The number of best solutions obtained
by SIR-widths compares very well with others. Hence, we can conclude that SIR’s
symbolic methodology of selecting the maximum impact variables is more efficient
than that of the function rate of change based rules.

In Table 3, we provide a summary of total CPU times taken by all rules for func-
tions with less than five dimensions and for those greater than 5 dimensions. In the
first part of Table 3, we observe that SIR’s performance is inferior in test functions up
to 5 dimensions. In problems with larger dimensions, its performance is significantly
superior as compared to Rules B and C. When the outlier CPU time (Griewank 20D)
was removed from this set, we have found the difference in performance statistically
significant (at a 5% significance level). In Table 3, the total CPU time needed by all
three methods is given for the first 29 test problems (split into less than or greater
than 5 dimensions) where all methods converge. This outcome is expected because the
sequence of variables to be partitioned gains more importance in larger dimensional
problems. Both Rules B and C are affected by the width of variable domains, and this
tends to push the selected variable sequence into a more balanced manner in terms
of box size. However, the size of variable domains has a more implicit impact on the
choice of variables in SIR.

5 Conclusion

A new SIIA has been developed to improve the convergence rate in IPA. The pro-
posed subdivision direction selection rule, SIR stems from SIIA. SIIA is based on
parsing a function into its sub expressions, converting it into a binary tree where
every subexpression is a node, and calculating their interval contributions to the total
function range. SIR is a labeling procedure that traverses the sub expressions tree to
identify a pair of maximum impact variables. The impact of the variables need not
be quantified in this approach. Hence, the inherent uncertainty that exists in interval
gradient ranges is eliminated in SIIA. SIR targets a reduction in the overestimation
of a parent box’s function range with its variable selection scheme.
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Two versions of SIR are proposed here: SIR-bounds and SIR-widths. While the
first version identifies and labels the maximum impact interval bounds at subexpres-
sion levels, the second version labels subexpressions with largest interval widths. The
labeling procedure SIR_Tree, traverses through labeled subexpressions and finally
reaches the maximum impact variables in the function expression.

SIR’s efficiency is illustrated by numerical tests and compared with function rate
of change based rules from the literature. It is also possible to utilize SIR in any IPA
that is used in the fields of constrained optimization (COP) and continuous constraint
satisfaction problems (CCSP). Currently, work is conducted to improve the solvability
of standard CCSP using SIIA.
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